作者:admin
发布时间:2011-06-29 08:36浏览:
次
表19-10随机区组设计的多个样本均数比较的方差分析公式
变异来源 离均差平方和SS 自由度v 均方MS F 总 ΣX2-C N-1 处理间C、k、N的意义同表19-6,b为区组数
例19.10为研究酵解作用对血糖浓度的影响,从8名健康人中抽血并制成血滤液。每个受试者的血滤液被分成4份,再随机地把4份血滤液分别放置0,45,90,135分钟,测定其血溏浓度(表19-11),试问放置不同时间的血糖浓度有无差别?
处理间:
H0:四个不同时间血糖浓度的总体均数相等,即μ1=μ2=μ3=μ4
表19-11 血滤放置不同时间的血糖浓度(mmol/L)
区组号 放置时间(分) 受试者小计
ΣXij
j 0 45 90 135 1 5.27 5.27 4.94 4.61 20.09 2 5.27 5.22 4.88 4.66 20.03 3 5.88 5.83 5.38 5.00 22.09 4 5.44 5.38 5.27 5.00 21.09 5 5.66 5.44 5.38 4.88 21.36 6 6.22 6.22 5.61 5.22 23.27 7 5.83 5.72 5.38 4.88 21.81 8 5.27 5.11 5.00 4.44 19.82 ΣXij
j 44.84 44.19 41.84 38.69 169.56(ΣX) Ni 8 8 8 8 32(N) Xi 5.6050 5.5238 5.2300 4.8363 ΣX2ij
j 252.1996 245.0671 219.2962 187.5585 904.1214(ΣX2)
H1:四个总体均数不等或不全相等
α=0.05
区组间:
H0:八个区组的总体均数相等,即μ1=μ2=……μ8
H1:八个区组的总体均数不等或不全相等
α=0.05
先作表19-11下半部分和右侧一栏的基本计算。
C=(ΣX)2/N=(169.56)2/32=898.45605
SS总=ΣX2-C=904.1214-898.45605=5.66535
V总=N-1=32-1=31
V处理=k-1=4-1=3
V区组=b-1=8-1=7
SS误差=SS总-SS处理-SS区组=5.66535-2.90438-2.49800=0.26297
V误差=(k-1)(b-1)=3×7=21
MS处理=SS处理/v处理=2.90438/3=0.9681
MS区组=SS区组/v区组=2.49800/7=0.3569
MS误差=SS误差/v误差=0.26297/21=0.0125
F处理=MS处理/MS误差=0.9681/0.0125=77.448
F区组=MS区组/MS误差=0.3569/0.0125=28.552
推断处理间的差别,按v1=3,v2=21查F界值表,得F0.005(3,21)=3.07,F0.01(3,21)=4.87,P<0.01;推断区组间的差别,按v1=7,v2=21查F界值表,得F0.05(7,21)=2.49,F0.01(7,21)=3.64,P<0.01。按α=0.05检验水准皆拒绝H0,接受H1,可认为放置时间长短会影响血糖浓度且不同受试者的血糖浓度亦有差别。但尚不能认为任两个不同放置时间的血糖浓度总体均数皆有差别,必要时可进一步作两两比较的q检验。
表19-12 例19.10资料的方差分析表
变异来源 SS v MS F P 处理间 2.90438 3 0.9681 77.448 <0.01 区组间 2.49800 7 0.3569 28.552 <0.01 误差 0.26297 21 0.0125 总 5.66538 31