作者:中华医学网
发布时间:2017-10-14 09:37浏览:
次
随机误差的区间概率
1. 定义
随机误差在某一区间出现的概率以某段正态分布曲线下所包含的面积表示。
一条完整的正态分布曲线所包含的面积,表示所有测量值出现的概率的总和,即是100%,等于1。用算式表示为:
一般以 为单位,计算不同 值曲线所包含的面积,制成概率积分表供直接查阅。
2. 计算公式
概率=面积=
有限数据的统计处理
随机误差分布的规律给数据处理提供了理论基础,但它是对无限多次测量而言。实际工作中我们只做有限次测量,并把它看作是从无限总体中随机抽出的一部分,称之为样本。样本中包含的个数叫样本容量,用n表示。
数据的趋势 → 数据集中趋势的表示
1. 算术平均值
n次测定数据的平均值。
是总体平均值的最佳估计。对于有限次测定,测量值总朝算术平均值 集中,即数值出现在算术平均值周围;对于无限次测定,即n → ∞时, →μ。
2. 中位数M
将数据按大小顺序排列,位于正中间的数据称为中位数M。
n为奇数时,居中者即是;n为偶数时,正中间两个数据的平均值即是。
数据的趋势 → 数据分散程度的表示
1. 极差R(或称全距):指一组平行测定数据中最大者(Xmax)和最小者(Xmin)之差。
R = Xmax - Xmin
2. 平均偏差:各次测量值与平均值的偏差的绝对值的平均。
绝对偏差 di = Xi - (i =1,2,…,n )
平均偏差
相对平均偏差
3. 标准偏差S:计算方法
标准偏差S =
相对标准偏差,也叫变异系数,用CV表示,一般计算百分率。
相对标准偏差RSD = ×100 %
自由度f:f = n-1
平均值的置信度区间 → 定 义
1. 置信度
置信度表示对所做判断有把握的程度。 表示符号:P 。
有时我们对某一件事会说“我对这个事有八成的把握”。这里的“八成把握”就是置信度,实际是指某事件出现的概率。
常用置信度:P=0.90,P=0.95;或P=90%,P=95%。
2. 置信度区间
按照t分布计算,在某一置信度下以个别测量值为中心的包含有真值的范围,叫个别测量值的置信度区间。
1. t的定义
,与 对比。
2. t分布曲线
(1) t分布曲线:t分布曲线的纵坐标是概率密度,横坐标是t,这时随机误差不按正态分布,而是按t分布。
(2) 与正态分布关系:t分布曲线随自由度f变化,当n→∞时,t分布曲线即是正态分布。
t分布曲线
【t分布值表】
由表可知,当f→∞ 时,S→σ,t即是u。
实际上,当f=20时,t与u已十分接近。
3. 平均值的置信度区间:
(1) 表示方法:
(2) 含义:在一定置信度下,以平均值为中心,包括总体平均值的置信度区间。
(3) 计算方法:
① 求出测量值的 ,S,n。
② 根据要求的置信度与f值,从t分布值表中查出t值。
③ 代入公式计算。
显著性检验 → 平均值与标准值比较
常用的方法有两种:t检验法和F检验法。
分析工作中常遇到两种情况:样品测定平均值和样品标准值不一致;两组测定数据的平均值不一致。需要分别进行平均值与标准值比较和两组平均值的比较。