作者:admin
发布时间:2011-06-29 08:22浏览:
次
第十八章 计量数据分析(一)
提要 计量资料常用的描述性指标:集中趋势指标(均数、几何均数、中位数)和离散趋势指标(全距、四分位数间距、方差、标准差);正常值范围的估计。
第一节 集中趋势指标
平均数是统计中应用最广泛、最重要的一个指标体系。常用的有算术均数、几何均数、中位数三个指标。它们用于描述一组同质计量资料的集中趋势或反映一组观察值的平均水平。
一、算术均数(arithmetic mean)
简称对数(mean)。习惯上以表示样本均数,以希腊字母μ表示总体均数。均数适用于对称分布,特别是正态或近似正态分布的计量资料,其计算方法有:
(一)直接法
当样本的观察值个数不多时,将各观察值X1,X2,……,Xn相加再除以观察值的个数n(样本含量)即得均数。其公式为:
公式(18.1)
式中,希腊字母Σ(读作sigma)是求和的符号。
例18.1 某地11名20岁健康男大学生身高(cm)分别为174.9,173.1, 171.8,179.0,173.9,172.7,166.2,170.8,171.8,172.1,168.5。试计算其均数。
(二)加权法
当观察值个数较多时,可先将各观察值分组归纳成频数表,用加权法求均数。其计算步骤如例18.2。
例18.2 某地1993年随机测量了该地110名20岁健康男大学生的身高(cm),资料如下,试计算其均数。
173.9 173.9 166.9 179.5 171.2 167.8 177.1 174.7 173.8 182.5 173.6 165.8 168.7 173.6 173.7 177.8 180.3 173.1 173.0 172.6 173.6 175.3 178.4 181.5 170.5 176.4 170.8 171.8 180.7 170.7 173.8 164.4 170.0 175.0 177.7 171.4 162.9 179.0 174.9 178.3 174.5 174.3 170.4 173.2 174.5 173.7 173.4 173.9 172.9 177.9 168.3 175.0 172.1 166.9 172.7 172.2 168.0 172.7 172.3 175.2 171.9 168.6 167.6 169.1 166.8 172.0 168.4 166.2 172.8 166.1 173.5 168.6 172.4 175.7 178.8 169.1 175.5 170.3 171.7 164.6 171.2 169.1 170.7 173.6 167.2 170.7 174.7 171.8 167.3 174.8 168.5 178.7 177.3 165.9 174.0 170.2 169.5 172.1 178.2 170.9 171.3 176.1 169.7 177.9 171.1 179.3 183.5 168.5 175.5 175.91.编制频数表
(1)求全距(range):找出观察值中的最大值(183.5)和最小值(162.9),它们的差值即全距,常用R表示。本例R=20.6。
(2)定组距和组段:相邻两组的最小值之差称组距,常用i表示,各组距可相等,也可不相等,一般用等距。常取全距的1/10,取整作组距。本例全距的1/10为2.06,取整为2,用等距共划分11个组段。第一组段应包括资料中最小值,最末组段应包括最大值,一般要求组段的起点为较整齐的数。本例第一组段的起点(即下限)取162,其止点(即上限)为第二组段的起点即164,然后每一组距(本例为2)就成为一组段,最末组段应同时写出下限和上限,本例为182~184。
(3)列表划记:按上述的组段序列排列制表,用正字划记法将例18.2中的数据归纳到各组段中,最后清点出频数得频数表,表18-1中的第(2)、(3)栏。
表18-1 110名20岁健康男大学生身高(cm)的频数分布
由频数表的频数分布可看出两个重要特征:集中趋势和离散趋势。集中趋势即频数分布向中央部分集中;离散趋势即频数分布由中央到两侧逐渐减少。频数分布可为①对称分布或近似正态分布,即集中位置在正中,两侧频数分布大致对称,如表18-1;②偏态分布,即集中位置偏向一侧,频数分布不对称,若集中位置偏向数值小的一侧,为正偏态分布;若集中位置偏向数值大的一侧,为负偏态分布。不同类型的分布,应采用相应描述指标和统计分析方法。
2.计算公式
公式(18.2)
式中,k为组段数;f1,f2,……,fk分别为各组段的频数;X1,X2,……,Xk分别为各组段的组中值,组中值为本组段的下限与相邻较大组段的下限相加除以2,如“162-”组段的组中值X1=(162+164)/2=163,余仿此。
3.列计算表(表18-2)计算均数
110名20岁健康男大学生身主的均数为172.73(cm)。
二、几何均数(geometric mean)
用G表示。常用于等比级数资料和对数对称分布,尤其是对数正态分布的计量资料。对数正态分布即原始数据呈偏态分布,经对数变换后(用原始数据的对数值lgX代替X)服从正态分布。其计算方法有:
表18-2 110名20岁健康男大学生身高(cm)均数的计算表(加权法)
身高级段(1) 组中值X
(2) 频数f
(3) FX
(4)=(2)×(3) 162~ 163 1 163 164~ 165 4 660 166~ 167 9 1503 168~ 169 13 2197 170~ 171 19 3249 172~ 173 27 4671 174~ 175