当前位置:主页 > 基础医学 > 文章内容

神经系统对躯体运动的调节(2)

作者:admin发布时间:2012-11-01 19:33浏览:

根肌纤维,称为梭内肌纤维;而囊外的一般肌纤维就称为梭外肌纤维。整个肌梭现阶附着在梭外肌纤维上,并与其平等排列呈并联关系。梭内肌纤维的收缩成分位于纤维的两端,而感受装置位于其中间部,两者呈串联关系。因此,当梭外肌纤维收缩时,感受装置所受的牵拉刺激将减少;而当梭内肌纤维收缩时,则感受装置对牵拉刺激的敏感度增高。肌梭的传入神经支配有两类。I类传入纤维直径较粗(12-20μm),Ⅱ类传入纤维直径较细(4-12μm)。中枢有运动传出支配梭外肌和梭内肌纤维,前者称为α传出纤维(直径12-20μm),后者称为γ传出纤维(直径2-6μm)。当γ传出纤维活动加强时,梭内肌纤维收缩,可提高肌梭内感受装置的敏感性,因此γ传出纤维的活动对调节牵张反射具有重要作用。进一步研究指出,梭内肌纤维分两类:一类其细胞核集中于中央部称为核袋纤维(nuclear bag fiber),它接受γ1传出纤维支配,并对快速牵拉较敏感,其传入纤维主要属I类;另一类其细胞核分散于整个纤维称为核链纤维(nuclearchain fiber),它接受γ2传出纤维支配,并对缓慢持续牵拉较敏感,其传入纤维有I类和Ⅱ类(图10-31)。

图10-31 两类梭内肌纤维示意图

A:核袋纤维 B:核链纤维

图10-30 肌梭甲:显示传出神经纤维支配 乙:显示传出和传入神经支配

1,4:γ-传入纤维 2:I类传入纤维3:Ⅱ类传入纤维

  腱器官分布在肌腱胶原纤维之间的牵张感受装置,由较细的I类纤维(直径12μm)支配,末梢一般只有几个分支。腱器官与梭外肌纤维呈串联关系,其功能与肌梭功能不同,是感受骨肉张力变化的装置。当梭外肌纤维发生等长收缩时,腱器官的传入冲动发放频率不变,肌梭的传入冲动频率减少;当肌肉受到被动牵拉时,腱器官和肌梭的传入冲动发放频率均增加。因此,腱器官是一种张力感受器,而肌梭是一种长度感受器。此外,腱器官的传入冲动对同一肌肉的α运动神经元起牵拉抑制作用,而肌梭的传入冲动对同一肌肉的α运动神经元起兴奋作用。一般认为,当肌肉受到牵拉时,首先兴奋肌梭的感受装置发动牵张反射,引致受牵拉的肌肉收缩以对抗牵拉;当牵拉力量进一步加大时,则可兴奋腱器官使牵张反射受抑制,以避免被牵拉的肌肉受到损伤。

  (四)节间反射

  脊动物在反射恢复的后期,可出现复杂的节间反射。例如,刺激动物腰背皮肤,可引致后肢发生一系列节奏性搔爬动作,称为搔爬反射。搔爬反向依靠脊髓上下节段的协同活动,所以是节间反射的一种表现。

  二、低位脑干肌紧张的调节

  (一)去大脑僵直

  在中脑上、下叠体(上、下丘)之间切断脑干的动物,称为去大脑动物。去大脑动物由于脊髓与低位脑干相连接,因此不出现脊休克现象,很多躯体和内脏的反射活动可以完成,血压不下降;而在肌紧张活动方面反而出现亢进现象,动物四肢伸直,头尾昂起,脊柱挺硬,称为去大脑僵直(decerbrate rigidity)。去大脑僵直主要是伸肌(抗重力肌)紧张性亢进,四肢坚硬如柱(图10-32)。

图10-32 去大脑僵直

  在去大脑动物,如以局部麻醉药注入一肌肉中,或切断相应的脊髓背根,以消除肌梭传入冲动进入中枢,则该肌的僵直现象被消失。可见,去大脑僵直是在脊髓牵张反射的基础上发展起来的,是一种增强的牵张反射。

  有人用电刺激动物脑干网状结构的不同区域,观察到在网状结构中具有抑制肌紧张及肌运动的区域,称为抑制区;还有加强肌紧张及肌运动的区域,称为易化区。抑制区位于延髓网状结构的腹内侧部分,电刺激抑制区可引致去大脑僵直减退。易化区分布于广大的脑干中央区域,包括延髓网状结构的背外侧部分、脑桥的中央灰质及被盖;此外下丘脑和丘脑中线核群等部位也具有对肌紧张和肌运动的易化作用,因此也包括在易化区概念之中(图10-33)。从活动的强度来看,易化区的活动比较强,抑制区的活动比较弱;因此在肌紧张的平衡调节中,易化区略占优势。

图10-33猫脑各部位,特别是脑干网状结构下行抑制(一)和易化(+)系统示意图

抑制作用(一)的路径:4为网状结构抑制区,发放下行冲动抑制脊髓牵张反射。

这一区接受大脑皮层 (1)尾状核(2)和小脑(3)传来的兴奋。

易化作用(+)的路径:5为网状结构易化区,发放下行冲动加强脊髓牵张反射。

6为延髓的前庭核,有加强脊髓牵张反射的作用。

  目前知道,抑制肌紧张的中枢部位有大脑皮层运动区、纹状体、小脑前叶蚓部、延髓网状结构抑制区;易化肌紧张的中枢部位有前庭核、小脑前叶两侧部、网状结构易化区。这些结构有的在脑干外,但与脑干内部的有关功能结构有功能上的联系。例如,刺激小脑前叶蚓部,可以在网状结构抑制区获得诱发电位,因引小脑前叶蚓部的作用可能是通过网状结构抑制区来完成的;又如,大脑皮层运动区和纹状体的作用可能也是通过网状结构抑制区来完成的。这些脑干外的抑制肌紧张的区域,不仅通过加强网状结构抑制区活动,使肌紧张受到抑制;而且也能控制网状结构易化区,使易化区的活动受到压抑,转而使肌紧张减退。再如,前庭核接受内耳前庭器官传入冲动的作用,转而提高网状结构易化区的活动;小脑前叶两侧部的肌紧张易化作用,可能也是通过网状结构易化区来完成的。在去大脑动物中,由于切断了大脑皮层运动区和纹状体等部位与网状结构的功能联系,造成抑制区活动减弱而易化区活动增强,使易化区的活动占有明显的优势,以致肌紧张过度增强而出现去大脑僵直。

  去大脑僵直主要是抗重力肌的肌紧张明显加强。一般情况下伸肌是抗重力肌,因此伸肌肌紧张在去大脑僵直时明显加强。有的动物,如南美洲的树赖(Sloth)栖于森林中,经常悬挂在树上,屈肌是抗重力肌;这类动物发生去大脑僵直时,屈肌的紧张明显加强。人类在某些疾病中,也可出现与动物去大脑僵直相类似的现象。例如,蝶鞍上囊肿引致皮层与皮层下失去联系时,可出现下肢明显的伸肌僵直及上肢的半屈状态,称为去皮层僵直(decorticate rigidity)。上肢的半屈状态是抗重力肌肌紧张增强的表现,因为人是直立的动物。人类的去大脑僵直,有时可在中脑具有疾患时出现,表现头后低仰,上下肢僵硬伸直,上臂内旋,手指屈曲(图10-34)。临床上如见到患者出现去大脑僵直现象,往往表明病变已严重地侵犯了脑干,预后不良的信号。

图10-34 人类去皮层僵直及去大脑僵直

A,B,C去皮层僵直 A:仰卧,头部姿势正常时,上肢半屈

B和C:转动头部时,上肢姿势 D:去大脑僵直,上下肢均伸直

  (二)α僵直和γ僵直

  从牵张反射的角度来分析,肌紧张加强的机制可以有二种。一种是于高位一中枢的下行性作用,直接或间接通过脊髓中间神经元提高α运动神经元的活动,从而导致肌紧张加强而出现僵直,这称为α僵直。另一种是由于高位中枢的下行性作用,首先提高脊髓γ运动神经元的活动,使肌梭的敏感性提高而传入冲动加多,转而使脊髓α运动神经元的活动提高,从而导致肌紧张加强而出现僵直,这称为γ僵直(图10-35)。由前庭核下行的作用主要是直接或间接促使α运动神经元活动加强,导致α僵直;由网状结构易化区下行的作用主要使γ运动神经元活动提高,转而发生肌紧张加强,出现γ僵直。经典的去大脑僵直主要属于γ僵直,因为在消除肌梭传入冲动对中枢的作用后,僵直现象可以消失。

图10-35高级中枢对骨骼肌运动控制的模式图

  三、姿势反射

  中枢神经系统调节骨骼肌的肌紧张或产生相应的运动,以保持或改正身体空间的姿势,这种反射活动总称为姿势反射。前述的牵张反射、对侧伸肌反射就是最简单的姿势反射。此外还有比较复杂的姿势反射,例如状态反射、翻正反射、直线或旋转加速运动反射(见感觉器官章)等。

  (一)状态反射

  头部在空间的位置改变以及头部与躯干的相对位置改变时,可以反射性地改变躯体肌肉的紧张性,这种反射称为状态反射。状态反射包括迷路紧张反射与颈紧张反射两部分。迷路紧张反射是指内耳迷路的椭圆囊和球囊的传入冲动对躯体伸肌紧张性的调节反射。在去大脑动物实验中见到,当动物仰臣卧时则伸肌紧张性最高,而当动物俯臣卧时则伸肌紧张性最低。这是由于不同头部位置会引致内耳迷路不