当前位置:主页 > 基础医学 > 文章内容

反射活动的一般规律(2)

作者:admin发布时间:2012-11-01 19:33浏览:

 ipsP是由于膜对K+的通透性增加而造成的。这些慢突触后电位的形成机制比较复杂,可能有不同的递质或受体参与。

  (二)反射弧中枢部分兴奋传布的特征

  1.单向传布在人为刺激神经时,兴奋可由刺激点爆发后沿神经纤维向两个方向传导(双向性);但在中枢内大量存在的化学性突触处,兴奋传布只能由传入神经元向传出神经元方向传布,也即兴奋只能由一个神经元的轴突向另一个神经元的胞体或突起传递,而不能逆和传布,单向传布是由突触传递的性质的决定的,因为只有突触前膜能释放神经递质。但是近来来的研究指出,突触后的靶细胞也能释放一些物质分子(如一氧化氮、多肽等)逆向传递到突触前末梢,改变突触前神经元的递质释放过程。因此,从突触前后的信息沟通角度来看,是双向的。

  2.中枢延搁兴奋通过中枢部分比较缓慢,称为中枢延搁。这主要是因为兴奋越过突触要耗费比较长的时间,这里包括突触前膜释放递质和递质扩散发挥作用等环节所需的时间。根据测定,兴奋通过一个突触所需时间约为0.3-0.5ms。因此,反射进行过程通过的突触数愈多,中枢延搁所耗时间就愈长。在一些多突触接替的反射,中枢延搁可达10-20ms;而在那些和大脑皮层活动相联系的反射,可达500ms。所以,中枢延搁就是突触延搁。

  3.总和在中枢内,由单根传入纤维的单一冲动,一般不能引起反射性传出效应。如果若干传入纤维同时传入冲动至同一神经中枢,则这些冲动的作用协同起来发生传入效应,这一过程称为兴奋的总和(图10-14)。因为中枢铁神经元与许多没的传入纤维发生突触联系,其中任何一个单独传入的冲动往往只引起该神经元的局部阈下兴奋,亦即产生较小的兴奋性突触后电位,而不发生扩布性兴奋。如果同时或差不多同时有较我的传入纤维兴奋,则各自产生的兴奋性突触后电位就能总和起来,在神经元的轴突始段形成较强的外向电流,从而爆发扩布性兴奋,发生反射的传出效应。局部阈下兴奋状态是神经元兴奋性提高的状态,此时神经元对原来不易发生传出效应的其他传入冲动就比较敏感,容易发生传出效应,这一现象称为易化。兴奋的总和包括空间性总和及时间性总和两类。

 

图10-14 反射弧中枢内的兴奋部和

  分别刺激不同皮肤部位(Sα、Sβ的下降段),不引起反射效应,如两刺激同时应用,则出现反射性肌肉收缩(上线记录),时标(中线)

  4.兴奋节律的改变在一反射活动中,如同时分别记录传入与传出的冲动频率,则可测得两者的频率不同。因为传出神经的兴奋节律来自传出神经元,而传出神经元的兴奋节律除取决于传入冲动的节律外,还取决于中间神经元和传出神经元的功能状态。

  5.后放(后发放、后放电)在一反射活动中,刺激停止后,传出神经仍可在一定时间内继续发放冲动,这种现象称为后放。后放的原因是多方面的,中间神经元的环状联系是产生后放的原因之一。此外,在效应器发生反射反应时,其本身的感受装置(如肌梭)又受到刺激,兴奋冲动又由传入神经传到中枢,这些继发性传入冲动的反馈作用能纠正和维持原先的反射活动,这也是产生后放的原因之一。

  6.对内环境变化的敏感性和易疲劳性在反射活动中,突触部位是反射弧中最易疲劳的环节。同时,突触部位也最易受内环境变化的影响,缺氧、二氧化碳、麻醉剂等因素均可作用于中枢而改变其兴奋性,亦即改变突触部位的传递活动。

  五、中枢抑制

  在任何反射活动中,中枢内既有兴奋活动又有抑制活动。某一反射进行时,某些其他反射即受抑制,例如吞咽时呼吸停止、屈肌反射进行时伸肌即受抑制(图10-15)。反射活动有一定的次序、一定强度,并有一定的适应意义,是反射的协调功能的表现。反射活动所以能协调,就是因为中枢内既有兴奋活动又有抑制活动;如果中枢抑制受到破坏,则反射活动就不可能协调。例如,用士的宁破坏脊髓抑制活动后,任何一个微弱刺激会导致四肢出现强烈的痉挛性收缩,失去了反射活动的协调性。根据中枢抑制产生机制的不同,抑制可分为突触后抑制和突触前抑制两类。

 

图10-15 拮抗性反射 F为半腱肌的反应(收缩),

E为股中间肌的反应(驰缓),TP为刺激传入神经的记号,1为时标

  (一)突触后抑制

  在哺乳类动物中,所有的突触后抑制都是由抑制性中间神经元活动引起的。由这一抑制性神经元发出的轴突末梢释放的递质,能使所有与其发生突触联系的其他神经元都发生抑制,都暗生抑制性突触后电位。按此观点,一个兴奋性神经元通过突触联系能引起其他神经元产生兴奋,但不能直接引起其他神经元产生突触后抑制;它必须首先兴奋一个抑制性神经元,转而抑制其他神经元。

  1.抑制性突触后电位脊髓前角运动神经元有的支配伸肌,有的支配屈肌。来自伸肌肌梭的传入神经冲动,能兴奋伸肌运动神经元,也能同时通过抑制性中间神经元转而抑制屈肌运动神经元。如用微电极插入屈肌运动神经元细胞体内,并刺激伸肌肌梭的传入神经使屈肌运动神经元发生抑制,可见到其细胞体的突触后膜出现超极化现象。这时膜电位的数值向-80mV水平靠近。这种超极化膜电位变化称为抑制性突触后电位(inhibitory postsynaptic potential,ipsP)。抑制性突触后电位的变化与兴奋性突触后电位变化在时程上极相似,但前者为超极化,后者为去极化,变化方向恰相反(图10-16)。可以设想突触后膜在超极化状态下。轴突始段部位将出现内向电流,造成该处不易爆发动作电位,也就表现为抑制。由于这种抑制是突触后膜出现抑制性突触后电位所造成的,因此称为突触后抑制(postsynaptic inhibition)。抑制性突触后电位是突触后膜对CI-通透性增加而形成的。

 

图10-16 抑制性突触后电位

  每组曲线的下线为某一屈肌运动神经元细胞内电位记录,上线为刺激拮抗伸肌传入神经时的背根电位记录。当刺激强度逐步加大时,背根电位逐步增大,超极化电位变化也逐步增大

  2.突触后抑制的分类根据抑制性神经元的功能和联系方式的不同,突触后抑制可分为传入侧支性抑制(afferent collateral inhibition)和回返性抑制(recurrent inhibition)(图10-17)。

 

图10-17 两类突触后抑制

甲:回返性抑制 乙:传入侧支性抑制黑色神经元代表抑制性神经元

  (1)传入侧支性抑制:是指在一个感觉传入纤维进入脊髓后,一方面直接兴奋某一中枢的神经元,另一方面发出其侧支兴奋另一抑制性中间神经元;然后通过抑制性神经元的活动转而抑制另一中枢的神经元。例如,伸肌的肌梭传入纤维进入中枢后,直接兴奋伸肌的α运动神经元,同时发出侧支兴奋一个抑制性神经元,转而抑制屈肌的α运动神经元,导致伸肌收缩而屈肌舒张;这种抑制曾被称为交互抑制。这种形式的抑制不是脊髓独有的,脑内也有。这种抑制能使不同中枢之间的活动协调起来。

  (2)回返性抑制:是指某一中枢的神经元兴奋时,其传出冲动沿轴突外传,同时又经轴突侧支去兴奋另一抑制性中间神经元;该抑制性神经元兴奋后,其活动经轴突反过来作用于同一中枢的神经元,抑制原先发动兴奋的神经元及同一中枢的其他神经元。脊髓前角运动神经元与闰绍细胞之间的联系,

  就是这种抑制的典型。前角运动神经元发出轴突支配外周的骨骼肌,同时也在脊髓内发出侧支兴奋闰绍细胞;闰绍细胞是抑制性神经元,其活动经轴突回返作用于脊髓前角运动神经元,抑制原先发动兴奋的神经元和其他神经元。这种形式的抑制在海马和丘脑内也明显存在。这种抑制是一种负反馈控制形式,它能使神经元的活动及时终止,也促使同一中枢内许多神经元之间的活动能步调一致。丘脑与海马内许多神经元的活动能够同步化,就是由于存在回返性抑制环节的缘故。闰绍细胞轴突末梢释放的递质是甘氨酸,其作用能被士的宁和破伤风毒素所破坏;在闰绍细胞功能存在后,将出现强烈的痉挛。

  (二)突触前抑制

  前文已述及,轴突可与另一神经元的轴突构成突触,这种突触可能是突触前抑制的结构基础。图10-18显示这种突触关系,A纤维末梢与运动神经元构成轴突-胞体型突触,能兴奋该运动神经元;b 纤维传入经过多突触接替后,末梢与A纤维末梢构成轴突-轴突型突触,不能直接影响该运动神经元活动。当A纤维兴奋传入冲动抵达末梢时,可引致运动神经元出现兴奋性突触后电位(图10-18,甲,1);当仅有B纤维兴奋冲动传入时,见不到该运动神经元有反应。如果先使B纤维兴奋,一定时间间隔后再使A纤维兴奋,则A纤维兴奋所引起的兴奋性突触后电位明显减小(图10-18,甲,2,2),说明B纤维的活动能抑制A纤维的兴奋作用。已知,抵达末梢部位的动作电位是触发神经递质释放的因素,如动作电位大则递质释放量大,运动电位小则递质释放量小;而动作电位的大小又受到轴突末梢跨膜静息电位的影响,跨膜静息电位大则动作电位大,跨膜静息电位小则动作电位也小。由此认为,突