当前位置:主页 > 基础医学 > 文章内容

电极电位(3)

作者:admin发布时间:2012-11-01 19:20浏览:

愈容易接受电子,氧化其它物质的能力愈强,它本身易被还原,是一个强氧化剂,而它的还原能力愈弱; 愈低,表示该电对的还原型愈容易放出电子,还原其它物质的能力愈强,它本身易被氧化,是一个强还原剂,而它的氧化型的氧化能力愈弱。

  电极反应式左方的氧化型可作氧化剂,右方的还原型可作还原剂。氧化型在表的愈下方就是愈强的氧化剂;还原型在表的愈上方就是愈强的还原剂。因此,在不同的氧化剂或在不同的还原剂之间进行强弱比较时,根据标准电极电位的数值可以明确地判断它们的强弱。例如,在表上所列的各物质中,F2是最强的氧化剂,k 是最强的还原剂。

  4.标准电极电位 值与电极反应中物质的计量系数无关。例如,Ag+│Ag电极的电极反应写成,若写成。??(Ag+/Ag)仍是+0.7996V,而不是2*0.7996V.

  5.电极电位和标准电极电位,都是电极处于平衡状态时表现时出来的特征,它和达到平衡的快慢无关。

  根据上面所述,在标准状态下,由任何两个电极(半电极)组成电池时,电极电位较高的一方,由于有较强的氧化剂,起还原作用为正极;电极电位较低的一方,由于有较强的还原剂,起氧化作用为负极。

  四、影响电极电位的因素

  (一)能斯特(Nernst)方程式

  一个电极的电极电位的大小与温度、浓度间的关系可用能斯特方程式表示:

(6-2)

  式中——电极电位,单位为V

  ——标准电极电位,单位为V

  R——气体常数,8.314J-1.Kmol-1

  F——法拉弟常数,96490C.mol-1

  T——绝对温度,K 

  n——电极反应得失的电子数

  当温度为298K时,将各常数值代入式(6-2),并将自然对数转换成常用对数,能斯特方程式可改写为:

 (6-3)

  应用能斯特方程式时,应注意以下几点:

  1.若电极反应式中有纯固体、纯液体或介质水时,它们的浓度不列入方程式中;气体物质用分压,即101.325kPa的倍数表示。

  2.若电极反应式中氧化型、还原型物质前的系数不等于1时,则在方程式中它们的浓度项应以对应的系数为指数。

  3. 氧化型、还原型物质包括与它们同存在的有关物质。例如, ,[氧化型]=[MnO4-][H+]8

  (二)有关能斯特方程式的计算

  1.计算电极电位

  利用能斯特方程式,可以计算不同条件下的电极电位值。

  例4 计算298K,锌离子浓度为0.01mol.L-1时,Zn2+│Zn电极的电极电位。

  解:电极反应

已知n=2,[Zn2+]=0.01mol.L-1, (Zn2+/Zn)=-0.7628V,则,

=-0.7628-0.05916

  =-0.822(V)

  在此例中,由于[Zn2+]<1mol.L-1,所以 。若金属离子浓度愈小,则金属的电极电位愈低表明还原剂失电子的倾向增强了。

  例5 计算298K时,Pt│Fe3+(mol.L-1),Fe2+(0.001mol.L-1)电极的电极电位。

  解: 电极反应:

已知n=1,[Fe3+]=1mol.L-1,[Fe2+]=0.0001mol.L-1,(Fe3+/Fe2+)=0.77V,则

  从本例中可以看出,氧化型离子浓度愈大,或还原型离子愈小,电极电位愈高,表明氧化型得电子的倾向愈大。也就是说电极电位随着氧化型物质浓度增大而升高,随着还原型物质浓度增大而降低。

  例6 求电极反应

  在pH=5溶液中的电极电位(其他条件同标准状态)。

  解:已知n=5,[MnO4+-]=[Mn2+]=1mol.L-1,[H+]=10-5mol.L-1,(MnO4-/Mn2+)=+1.491V,则

  计算结果表明,[H+]降低,对应的氧化型物质(MnO4-)的氧化能力降低。

  2.判断原电池的正、负极,计算电动势

  通常组成原电池的各有关物质并不是处于标准状态。计算原电池的电动势,首先根据标准电极电位表,利用能斯特方程计算出标准状态下各电极的电极电位。然后根据电极电位的高低判断正、负极,把电极电位高的电极作正极,电极电位低的电极作负极。正极的电极电位减去负极的电极电位即得原电池的电动势。

  例7 计算298K时,电池Cu│Cu2+(0.1mol.L-1)‖Fe2+(0.1mol.L-1);Pt的电动势,并说明它是否按惯例书写正负极,列出电池反应式。

  解:从表6-1中查出电极反应式及标准电极电位:

  根据能斯特方