作者:admin
发布时间:2012-11-01 19:17浏览:
次
此酶分子量为120KD,每个细胞约有100个酶分子,但活性只有DNa polⅠ的5%,它具有5′→3′聚合活性和3′→5′外切活性,而没有5′→3′外切活性,它的作用可能与DNA损伤修复有关。
3.DNA聚合酶Ⅲ(DNA polⅢ)
图16-12 DNA聚合酶Ⅲ催化先导链和随从的合成
这是在DNA复制过程中起主要作用的聚合酶,它是由一个多亚基组成的蛋白质分子,其分子量>600kDa整个酶分子形成一个不对称的二聚体,每个大肠杆菌细胞中只有10?0个酶分子,但催化dNTP参入DNA链的速率却是最快的,约为9000核苷酸/每分钟/每个酶分子。这也证明DNa polⅢ是DNA复制过程中主要发挥作用的酶。在大肠杆菌染色体DNA进行复制时,DNA聚合酶Ⅲ全酶并不是单独起作用的,而是与引发体,介链酶等构成一个复制体(replisome)。由于复制体的存在,先导链和随从链可以同时复制。DNa polⅢ是由多亚基组成的不对称二聚体,它可能同时负责先导链和随从链的复制,在φ×174的复制中观察到引发体总是伴随着DNA噜噗(loop)的存在。图16?2可以看到,由于随从链的模板DNA在DNA聚合酶Ⅲ全酶上绕转了180°而形成一个噜噗,因此岗崎片段的合成方向能够与先导链的合成方向以及复制体移动方向保持一致。
随着DNA polⅢ向前移动,先导链的合成逐渐延长的同时,岗崎片段也在不断延长,这一噜噗也在不断扩大。当岗崎片段合成到前一个片段的5′端时,这一大噜噗就释放出来,由于复制叉向前移动又可将另一部分随从链的模板置换出来,由引发体合成新的引物,然后再形成一个小的噜噗,进行新的岗崎片段的合成。由此模型不难看出:随从链的合成需要周期性的引发,因此其合成进度总是与前导链相差一个岗崎片段的长度。岗崎片段完成后,其5′端的RNA引物由DNa polⅠ的5′→3′外切酶活性切除,由此造成的空隙再由DNA polⅠ的5′→3′聚合活性催化dNTP得到填补。所以DNA的复制是在DNa polⅢ和DNA polⅠ互相配合下完成的。
下面列表说明三种大肠杆菌DNA聚合酶的特性?
表16-1 大肠杆菌DNA聚合酶特征?
DNA聚合酶Ⅰ DNA聚合酶Ⅱ DNA聚合酶Ⅲ 分子量 109KD 120KD >600KD 每个细胞中的分子数 400 17-100 10-20 5′→3′聚合活性 + + + 37℃转化率核苷酸数/酶分子·分钟 600 30 30,000 5′→3′外切活性 + - - 5′→3′外切活性 + + + 切刻平移活性 + - - 对dNTP亲和力 低 低 高 功能 修复 不详 复制 去除引物 填补空缺真核生物DNA聚合酶
真核生物DNA聚合酶有α、β、γ、δ及ε。它们的基本特性相似于大肠杆菌DNA聚合酶,其主要活性是催化dNTP的5′→3′聚合活性,基本特征见表16-2。?
表16-2 真核生物DNA聚合酶
α β γ δ ε 亚基数 4 4 4 2 5 分子量(KD) >250 36-38 160-300 170 256 细胞内定位 核 核 线粒体 核 核 5′→3′聚合活性 + + + + + 3′→5′外切活性 - - - - - 功能 复制、引发 修复 复制 复制 复制真核细胞在DNA复制中起主要作用的是DNA polα,主要负责染色体DNA的复制。DNa polβ的模板特异性是具有缺口的DNA分子,被认为它与DNA修复有关。DNa polγ在线粒体DNA的复制中起作用。DNA polδ不但有5′→3′聚合活性,而且还具有3′→5′外切酶活性,据认为真核生物DNA复制是在DNa polα和DNA polδ协同作用下进行的,前导链的合成靠DNA polδ催化,并且还需要一种细胞周期调节因子椩鲋诚赴?丝乖?proliferating cell nucleus antigen, PCNA)参与。而随从链的合成靠DNA polα和引发酶配合作用完成。
(二)与超螺旋松驰有关的酶:
DNA复制从起始点开始向一个方向复制时,局部的DNA双链必须打开,主要靠解链酶的作用,打开后的单链还需要单链结合蛋白与其结合,在复制叉向前移动时造成其前方DNA分子所产生的正超螺旋,必须由拓扑异构酶来解决。下面分别介绍它们的作用。
拓扑异构酶(topoisomerase)是一类改变DNA拓扑性质的酶。在体外可催化DNA的各种拓扑异构化反应,而在生物体内它们可能参与了DNA的复制与转录。在DNA复制时,复制叉行进的前方DNA分子部分产生有正超螺旋,拓扑酶可松驰超螺旋,有利于复制叉的前进及DNA的合成。DNA复制完成后,拓扑酶又可将DNA分子引入超螺旋,使DNA缠绕、折叠,压缩以形成染色质。DNA拓扑异构酶有Ⅰ型和Ⅱ型,它们广泛存在于原核生物及真核生物中。表16-3
表16-3 大肠杆菌和真核生物中的拓扑异构酶?
类型 作用 对超螺旋的作用 Ⅰ型拓扑异构酶 大肠杆菌 切开一股DNA链 松驰负超螺旋 真核生物 切开一股DNA链 松驰正,负超螺旋 Ⅱ型拓扑异构酶 大肠杆菌 切开二股DNA链 构驰正超螺旋; 依赖ATP 引入负超螺旋, 解环连等 真核生物 切开二股DNA链 松驰正超旋, 依赖ATP 但不能引入负超螺旋拓扑异构酶Ⅰ(TopoⅠ)的主要作用是将环状双链DNA的一条链切开一个口,切口处链的末端绕螺旋轴按照松驰超螺旋的方向转动,然后再将切口封起来。这就使DNA复制叉移动时所引起的前方DNA正超螺旋得到缓解,利于DNA复制叉继续向前打开。拓扑异构酶Ⅰ除上述作用外,对环状单链DNA还有打结或解结作用,对环状双链DNA的环连或解连以及使环状单链DNA形成环状双链DNA都有作用(图16-13)。
图16-13 拓扑酶Ⅰ及Ⅱ的作用特点
?(a)大肠杆菌拓扑酶Ⅰ催化的4种拓扑异构化作用 (b)拓扑酶Ⅱ的作用
拓扑异构酶Ⅱ(TopoⅡ)是在大肠杆菌中发现的,曾被称为旋转酶(gyrase),它们作用特点是切开环状双链DNA的两条链,分子中的部分经切口穿过而旋转,然后封闭切口,TopoⅡ还可使DNA分子从超螺旋状态转变为松驰状态,此反应不需要ATP参与。DNA复制完成后,TopoⅡ在ATP参与下,DNA分子从松驰状态转变为负超螺旋。此外,TopoⅡ催化的拓扑异构化反应还有环连或解环连,以及打结或解结。
四、DNA复制的终止阶段
DNA在复制过程中,合成出的前导链为一条连续的长链。随从链则是由合成出许多相邻的片段,在连接酶的催化下,连接成为一条长链。连接作用是在连接酶催化下进行的。
连接酶(ligase)的作用是催化相邻的DNA片段以3′、5′-磷酸二酯键相连接。连接反应中的能量来自ATP(或NAD+)。连接酶先与ATP作用,以共价键相连生成E桝MP 中间体。中间体即与一个DNA片段的5′-磷酸相连接形成E-AMP-5′-DNA。然后再与另一个DNA片段的3′-OHH